MMR Vaccine


Knowledge, attitudes, beliefs and practices of general practitioners towards measles and MMR vaccination in southeastern France in 2012. 2014, Pulcini, Clin Microbiol Infect

13% of general practitioners do not consider measles a dangerous disease. 12% of general practitioners consider the second dose of MMR to be useless.
33% of general practitioners do not believe that MMR vaccination should be mandatory for children under 2 years of age. (France)


Factors associated with uptake of measles, mumps, and rubella vaccine (MMR) and use of single antigen vaccines in a contemporary UK cohort: prospective cohort study. 2008, Pearce, BMJ

The higher the level of education, age and income, the more likelihood of parents refusing the MMR, and choosing a monovalent measles vaccine. (United Kingdom)


Measles, mumps, rubella, and varicella combination vaccine: safety and immunogenicity alone and in combination with other vaccines given to children. Measles, Mumps, Rubella, Varicella Vaccine Study Group. 1997, White, Clin Infect Dis

After the MMRV vaccine, much less varicella antibodies are produced than after a separate vaccine, but more measles antibodies, as compared to MMR. [1].


CDC Pinkbook Mumps

In pre-vaccination times, 15-27% of mumps cases were asymptomatic. The number of asymptomatic cases today is unknown, as it is unclear how the vaccine modifies clinical symptoms. Orchitis (testicular inflammation) is the most common complication of mumps, but it is only possible in post-pubertal males. Orchitis is primarily unilateral. Infertility caused by mumps orchitis is quite rare, even in cases of bilateral orchitis.
Prior to introduction of the vaccine, cases of mumps were not recorded.
Monovalent mumps vaccine is virtually non-existent today, except for Japan, where MMR is still banned, mumps vaccine is not sponsored by the state, and very few people get vaccinated against it.


Reports of sensorineural deafness after measles, mumps, and rubella immunization. 1993, Stewart, Arch Dis Child

Here is the description of 9 cases of deafness after the MMR vaccine within four years of vaccination. The authors conclude that in 3 cases deafness was unrelated to the vaccine (but they do not provide an explanation for this conclusion), and in 6 other cases it may or may not have been related to the vaccine.
Since unilateral deafness is hard to diagnose in children, and they get vaccinated at the age of 12 months, there may have been other cases that were missed.
The authors suggest checking children’s hearing upon admission to school and comparing it to historical data, in order to understand whether the MMR vaccine affects hearing.
Another 44 cases are described here.
A few more cases of deafness after the MMR vaccine: [1], [2], [3], [4], [5], [6], [7], [8], [9], [10].


The effectiveness of the mumps component of the MMR vaccine: a case control study. 2005, Harling, Vaccine

Mumps outbreak in London. 51% of the patients had been vaccinated. The effectiveness of one dose of the vaccine is 64%. The effectiveness of two doses – 88%. This effectiveness is much lower than is stated in clinical trials, since immunogenicity (i.e. the amount of antibodies) is not an accurate biological marker of the vaccine effectiveness. Moreover, the vaccines might have been improperly stored, which could have caused them to lose their effectiveness.
The authors also analyze other studies of the mumps vaccine effectiveness. In the 60s, the effectiveness was 97%, in the 70s it was 73-79%, in the 80s – 70-91% and in the 90s – 46-78% (87% for the Urabe strain).


Vaccine-related mumps infections in Thailand and the identification of a novel mutation in the mumps fusion protein. 2013, Gilliland, Biologicals

Two weeks after the MMR vaccination of nursing students in Thailand, an outbreak of mumps occurred. The vaccine strain of the virus (Leningrad-Zagreb) was found in those infected. This strain has repeatedly caused mumps outbreaks before.


Waning immunity against mumps in vaccinated young adults, France 2013. 2016, Vygen, Euro Surveill

In 2013, 15 mumps outbreaks were registered in France. 72% of the cases had been vaccinated twice. The effectiveness of the vaccine was 49% for one dose and 55% for two doses.
Among those who had been vaccinated once, the risk of getting mumps increased by 7% for every year that had passed since the vaccination.
Among those who had been vaccinated twice, the risk of getting mumps increased by 10% for every year that had passed after the second dose.
Orchitis was observed in five men. One of them was unvaccinated, two had been vaccinated with one dose, and another two had been vaccinated twice.
Mumps is a mild disease, which passes on its own, but sometimes it can cause severe complications, such as orchitis, meningitis, pancreatitis or encephalitis, especially in adults. Complications from mumps are observed more often in adults and they are more severe than in children, especially among the unvaccinated.
In other countries, mumps outbreaks are also observed among the vaccinated. The reason for this is the decreasing effectiveness of the vaccine and the lack of natural boosters. Other reasons for the outbreaks could be the initial overestimation of the vaccine effectiveness, insufficient vaccination coverage, or existence of a strain that is not covered by the vaccine.
Outbreaks occurring among the vaccinated and the decreasing effectiveness, both lead to thoughts about a third dose of the vaccine. This kind of an experiment was conducted in the US during the outbreaks in 2009 and 2010. Both times the outbreak subsided a few weeks after the administration of the vaccine. However, the outbreaks always subside at some point, so it was unclear whether it had anything to do with the vaccination. Nonetheless, this and other experiments hint that a third dose of the vaccine might not be a bad idea. Moreover, during the vaccination campaigns in the US, the third dose had few side effects.
They wanted to introduce a third dose of MMR into the national immunization schedule in Netherlands, but changed their mind, since mumps rarely causes complications, and the vaccination coverage among adults is unlikely to be satisfactory.
Mumps outbreaks among the vaccinated, along with this study, led the Ministry of Health of France to recommend a third dose of MMR at times of outbreaks. Even though it is unknown whether the vaccine is effective for those already infected with the virus, it is quite possible that the vaccine will cause a decrease in the contagious period of the vaccinated patients.
The Dutch study determined that two thirds of cases during outbreaks are asymptomatic. The role of asymptomatic patients in the transmission of the disease remains unknown.
Future observations in France, and possibly other countries that would adopt the same recommendation, will help determine whether the third dose of MMR is effective during outbreaks.


In 2010, two virologists, who had previously worked for Merck, sued the company. They claimed that Merck manipulated the results of the mumps vaccine clinical trial, which allowed the company to remain the exclusive MMR manufacturer in the United States.
The lawsuit states that Merck organized a fictitious vaccine-testing program in the late 90s. The company obliged the scientists to participate in the program, promising them all bonuses if the vaccine got certified, and threatening prison if they were to report this fraud to the FDA.

The effectiveness of the mumps vaccine is determined in the following way. A blood sample is taken from children before and after vaccination. After that, a virus is added to the blood, which creates plaques as it infects the cells. Comparing the amount of these plagues in the blood before and after vaccination indicates the effectiveness of the vaccine.
Instead of testing how children’s blood neutralizes the wild virus strain, Merck was testing how it neutralizes the vaccine strain. However, this was still not enough to demonstrate the required 95% effectiveness. Thus, rabbit antibodies were added to the tested children’s blood, bringing the effectiveness level to 100%.
And that is not all of it. Since adding animal antibodies showed pre-vaccine effectiveness of 80% (instead of 10%), the fraud was evident. First, the number of added rabbit antibodies was changed, but it did not give the desired results. So they simply began to falsify the plaque counting, and counted plaques that actually were not in the blood. Falsified data was entered into an Excel file, since changing paper forms took too much time, plus this tactic did not leave any traces of falsification.
Still, the virologists did contact the FDA and the FDA sent an agent for a check. She asked questions for half an hour, received false answers, did not ask any questions the virologists themselves, did not check the lab, and wrote a one-page report, pointing to some minor issues with the process, but never mentioning neither the rabbit antibodies nor the falsified data.
As a result, Merck has received the MMR and MMRV certification, and is the sole manufacturer of these vaccines in the United States.
After the big mumps outbreaks in 2006 and 2009, the CDC, which planned on eliminating mumps by 2010, shifted the goal date to 2020.
When the court asked Merck to provide evidence of the vaccine effectiveness, they provided data from 50 years ago.


All MMR safety studies described in the section about measles are applicable to mumps as well. Here are some more:


Outbreak of aseptic meningitis associated with mass vaccination with a urabe-containing measles-mumps-rubella vaccine: implications for immunization programs. 2000, Dourado, Am J Epidemiol

After the mass MMR vaccination campaign in Brazil with the Japanese strain of mumps (Urabe), an outbreak of aseptic meningitis began. The risk of disease increased by 14-30 times.
The fact that Urabe strain is associated with aseptic meningitis was already known, but Brazilian authorities decided to use this strain anyway, as it is cheaper and more effective than the Jeryl Lynn strain (which is used in the US), and because they thought the risk of meningitis was quite low.
In France, vaccination with the same strain did not cause a meningitis outbreak. The authors attribute this phenomenon to the fact that the outbreaks in Brazil were observed mainly in the large cities, where people live close to hospitals. Moreover, a large number of children had been vaccinated in a very short time. These factors made it possible to identify the outbreak.
The authors worry that such side effects could lead to more people refusing vaccination. They say that people’s belief in the benefits of vaccination is no longer strong enough on its own, and that more and more people refuse vaccination, and that it would not hurt to also record side effects of the vaccination.


Outbreak of aseptic meningitis and mumps after mass vaccination with MMR vaccine using the Leningrad-Zagreb mumps strain. 2002, da Cunha, Vaccine

The following year, learning from their mistakes, the Brazilian authorities bought MMR with another strain of mumps (Leningrad-Zagreb) and vaccinated 845 thousand children with it. Another outbreak of aseptic meningitis started, and this time the risk of disease was 74 times higher. Sure, it was known that this strain also increases the risk of meningitis, but since the vaccination campaign in the Bahamas did not cause a meningitis outbreak, they decided to see how it would turn out in Brazil. Moreover, a mumps outbreak also began. One out of every 300 doses of the vaccine resulted in mumps.
The authors are wondering whether all the vaccination campaign funding should be used on vaccines, or maybe some of it should be allocated to registering side effects. They write that this issue is quite controversial in the medical literature. Supporters of prioritizing the vaccine believe that benefits of vaccination campaigns are indisputable, and that there is no need to spend money on such nonsense. Proponents of side effects monitoring believe that lack of information scares people and leads to distrust of the vaccines.
Leningrad-Zagreb strain was developed in Serbia on the basis of Leningrad-3 strain, which also caused meningitis.


Henoch-Schönlein purpura and drug and vaccine use in childhood: a case-control study. 2016, Da Dalt, Ital J Pediatr

In those vaccinated with MMR, the risk of hemorrhagic vasculitis was 3.4 times higher. In children, this disease usually goes away on its own, but in 1% of cases it can lead to kidney failure.


Mumps vaccine associated orchitis: Evidence supporting a potential immune-mediated mechanism. 2010, Clifford, Vaccine

Orchitis may well occur as a result of mumps vaccine: [1], [2], [3], [4]


Deep sequencing reveals persistence of cell-associated mumps vaccine virus in chronic encephalitis. 2017, Morfopoulou, Acta Neuropathol

A 14 months old boy was given an MMR vaccine, and 4 months later he was diagnosed with a severe combined immunodeficiency. He then successfully underwent a bone marrow transplant, but developed chronic encephalitis, and died at the age of 5. A brain biopsy showed that he had the vaccine strain of the mumps virus in his brain. This was the first case of panencephalitis caused by the mumps virus.


The use of fetal bovine serum: ethical or scientific problem? 2002, Jochems, Altern Lab Anim

One of the MMR components (and some other vaccines) is fetal bovine serum. Cells, in which the virus is grown, need to multiply. To do so, they need a nutrient medium with hormones, growth factors, proteins, amino acids, vitamins, etc. Fetal bovine serum is usually used as this medium. Since the serum should preferably be sterile, the blood of calves' fetuses is used instead of the cow’s blood.
A pregnant cow is killed and the uterus is removed. Then the fetus is removed from the uterus, the umbilical cord is cut and disinfected. After that the heart is punctured with a needle and the blood is pumped out. Sometimes a pump is used for this, sometimes a massage. After the blood coagulates, platelets and coagulation factors are separated from it by centrifugation. Fetal bovine serum is what remains as a result.
Apart form the necessary components, the serum can also contain viruses, bacteria, yeast, fungi, mycoplasmas, endotoxins, and possibly prions. Many components of bovine serum have not yet been identified, and the function of many of the identified ones is unknown.
150 ml of serum can be collected from a three months old fetus, 350 ml from a six month old, and 550 ml from a nine month old fetus. (Cows’ pregnancy lasts 9 months). The global market for bovine serum is 500,000 liters every year, which requires approximately 2 million pregnant cows. (Currently, the serum market is already 700,000 liters).

The authors then go on to analyze the literature on the subject of whether the fetus suffers when its heart is punctured and its blood is pumped out.
Since the fetus experiences anoxia (an acute oxygen deficiency) when separated from the placenta, perhaps it could prevent the pain signals from reaching the brain, and the fetus might not suffer. However, it turns out that, unlike adult rabbits, who die of anoxia within 1.5 minutes, prematurely born rabbits can live without oxygen for 44 minutes. This happens because fetuses and newborns compensate for oxygen deficiency with anaerobic metabolism. Moreover, fetal brain consumes much less oxygen than adult brain. Other species of animals show similar results, but calves have never been examined specifically.
Science has only recently raised the issue of whether a mammal’s fetus or newborn feels pain. Just ten years ago, infants were believed to be less sensitive to pain than adults, which is why surgeries on premature and full-term infants were performed without anesthesia. Today, it is believed that human fetus can feel pain as early as 24th week of pregnancy, and can suffer starting from week 11 after conception. Moreover, fetuses and newborns are more sensitive to pain than adults, since they have not yet developed a mechanism for suppressing physiological pain. Therefore, a fetus can even feel pain form a simple touch.
The authors conclude that normal brain activity is observed in fetus when its heart is being punctured, it feels pain and suffers when the blood is pumped out, and maybe even after the procedure, until it dies.
The authors then discuss whether it is possible to anesthetize the fetus, so that it would not feel pain. Some believe that anoxia itself plays a role of anesthetic, but that is not the case. In addition, newborn mammals have poor capacity to metabolize drugs. Also, it is undesirable to have these drugs in the serum. Electrical stunning cannot be used either, since it causes cardiac arrest. The authors believe that, perhaps, a bolt, appropriately stunned into the brain, would induce brain death.
Some manufacturers claim that they kill the fetus before harvesting blood, but that is not true, since the blood clots right after death, and to collect it the fetus must be alive.
The authors conclude that the procedure of harvesting the fetal bovine serum is inhumane.


Benefits and expenses due to animal serum used in cell culture production. 1999, Wessman, Dev Biol Stand

20-50% of fetal bovine serum is infected with bovine viral diarrhea virus, as well as other viruses.
We are talking only about the viruses known to science, which constitute only a small fraction of all the existing viruses.


Fetal Bovine Serum RNA Interferes with the Cell Culture derived Extracellular RNA. 2016, Wei, Sci Rep

Fetal bovine serum contains extracellular RNA, which is impossible to separate from the serum. This RNA interacts with human cells RNA, in which vaccine viruses are grown.


Evidence of pestivirus RNA in human virus vaccines. 1994, Harasawa, J Clin Microbiol

The authors examined five types of live vaccines and detected bovine viral diarrhea virus RNA in MMR vaccines of two different manufacturers, as well as in two monovalent vaccines against mumps and rubella, which most likely got there from fetal bovine serum.
In infants, this virus might cause gastroenteritis, and in pregnant women, it might lead to the birth of children with microcephaly.


Viral contamination of bovine foetal serum and cell cultures. 1977, Nuttall, Nature

The fact that fetal bovine serum is infected with the bovine viral diarrhea virus was known already in 1977. It is known that this virus passes through placenta and can infect the calf fetus in the uterus. 60% of serum samples in Australia were contaminated with the virus. 8% of the vaccines against Bovine Rhinotracheitis were also contaminated.
The virus was also found in bovine kidney cells, which are used in production of measles vaccine.


In 1978 planned completely eradicated measles within the next four years. In 1989 it turned out that the old vaccine there was some kind of irregularity in the measles, and that it was correct only in 1980. True and the right vaccine did not lead to the eradication of measles, so in the same year they decided to introduce a second dose of MMR, and it turned out that a measles outbreak might well be in school , where 100% of children have documentary evidence of vaccination. CDC did not know, how can this be explained.


The measles vaccine is always part of the trivalent MMR vaccine (with rubella and mumps), or the four-valent MMRV vaccine (with rubella, mumps and chickenpox.) Monovalent measles vaccine is not produced in developed countries, but in Russia and in some countries of the third world it seems to be still available.It is usually given two doses - at 12 months and 5-6 years.
Unlike inanimate vaccines that we have considered so far, measles is a weakened vaccine that contains Live virus: Live vaccines are much more effective than inanimate ones, and therefore they are not added Lumino. The problem of live vaccines, among other things, that the attenuated viruses may well mutate and become virulent again, and that vaccinated people may be contagious to others.

[3] 2013, Monica Hau,
[2] 2015, Tramuto F,
[4] 2012, Lindsay Nestibo,
[1] 1999, Jenkin GA,


Measles Virus Neutralizing Antibodies in Intravenous Immunoglobulins: is an Increase by Re-Vaccination of Plasma Donors possible? 2017, Modrof, J Infect Dis

Immunoglobulin is used to treat measles in people with immune diseases, which is made from blood plasma from donors. The authors analyzed antibodies against measles in blood donors, and it turned out that those who were born after 1990 were 7 times fewer antibodies than those who were born before 1962. Vaccination of this problem did not solve, because it raised the level of antibodies only twice, and only for a few months.The authors recommend the FDA to reduce the amount of required antibodies in the immunoglobulin.
Another similar study. Erez year after the third vaccination the MMR, the amount of antibody has returned to its previous level.


The effect of live measles vaccines on serum vitamin A levels in healthy children. 1998, Yalçin, Acta Paediatr Jpn

Like measles, vaccination against measles and MMR, also significantly depletes the supply of vitamin A. [1]


Atopy in children of families with an anthroposophic lifestyle. 1999, Alm, Lancet

Those who were not vaccinated with MMR, allergies were 33% less common, those who fed mostly organic allergy products were 37% less likely. Allergies were also less common in those who did not use antibiotics, did not use antipyretic drugs, were ill with measles, ate fermented vegetables, or were at breastfeeding for at least 4 months.


Vaccination and Allergic Disease: A Birth Cohort Study. 2004, McKeever, Am J Public Health

A study of 30 thousand children from the UK.
Children vaccinated against diphtheria/tetanus/pertussis/polio had asthma 14 times more often and eczema – 9 times more often than unvaccinated children.
Children vaccinated against measles/mumps/rubella had asthma 3.5 times more often and eczema – 4.5 times more often.
The numbers seem to speak for themselves, right? But these figures do not suit the authors, as they want to justify vaccinations. So they do two sleights of hand.
First, they determined that unvaccinated children visit doctors less. In their opinion, this does not mean that unvaccinated children get sick less often, but rather that their chance of being diagnosed is lower than of those vaccinated! Therefore, they make a correction. It turns out not to be enough, however.
They go further and divide all children into 4 groups by the number of visits to the family doctor, and then analyze each group separately. And, oh miracle, statistical significance among those who go to the doctors often disappears! But among those who went to see doctors less then 3-6 times, the vaccinated children had asthma and eczema 10-15 times more often than the unvaccinated ones anyway.
Authors, with a clear consciousness, conclude that vaccinations do not increase the risk of asthma or eczema.
Doctors, who only read the abstract (meaning almost everyone, since only few people read these articles in full), only learn of the conclusion and, with a calm heart, go on and continue to vaccinate children.
Such sleights of hand are often found in the studies that allegedly prove the safety of vaccinations.


DTP with or after measles vaccination is associated with increased in-hospital mortality in Guinea-Bissau. 2007, Aaby, Vaccine

Children from Guinea-Bissau, who received a diphtheria/tetanus/pertussis vaccine together with the measles vaccine died twice more often that those who only received a measles vaccine.
Authors cite several more studies with the same results in Gambia, Malawi, Congo, Ghana and Senegal.


Co-administration of live measles and yellow fever vaccines and inactivated pentavalent vaccines is associated with increased mortality compared with measles and yellow fever vaccines only. An observational study from Guinea-Bissau. 2014, Fisker, Vaccine

Children who received a pentavalent vaccine (diphtheria/tetanus/pertussis/Hib/hepatitis B), in addition to measles and yellow fever vaccines, died 7.7 times more often than the children who did not receive a pentavalent vaccine.
In this lecture Susan Humphries explains why the combination of live and killed vaccines leads to this effect.

Лицензия Creative Commons Content above is licenced under Creative Common Attribution—NonCommercial—NoDerivatives (CC BY-NC-ND) licence,
i.e. it is free for non-commercial distribution and citation with this reference being provided:, amantonio, using the content to create another product or meaning is prohibited., 2017-2019